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Abstract. A novel theory of stages in cognitive development is presented, 
loosely  corresponding  to  Piagetan  theory  but  specifically  oriented  toward  AI 
systems centered on uncertain inference components. Four stages are articulated 
(infantile, concrete, formal and reflexive), and are characterized both in terms of 
external cognitive achievements (a la Piaget) and in terms of internal inference 
control dynamics. The theory is illustrated via the analysis of specific problem 
solving tasks corresponding to the different stages.  The Novamente AI Engine, 
with  its  Probabilistic  Logic  Networks  uncertain  inference  component  and  its 
embodiment n the AGI-SIM simulation world, is used as an example throughout.

Introduction

Contemporary cognitive science contains essentially no theory of “AI developmental 
psychology”  –  a  lack  which  is  frustrating  from  the  perspective  of  AI  scientists 
concerned with understanding, designing and controlling the cognitive development of 
generally  intelligent AI systems. There is  of  course an extensive science of human 
developmental psychology, and so it  is a natural research program to take the chief 
ideas from the former and inasmuch as possible port them to the AI domain. However 
this is not an entirely simple matter both because of the differences between humans 
and  AI’s  and  because  of  the  unsettled  nature  of  contemporary  developmental 
psychology theory. The present paper describes some work that we have done in this 
direction,  as  part  of  a  longer-term  project  to  develop  a  systematic  theory  of  AI 
cognitive development. 

The ghost of Jean Piaget hangs over modern developmental psychology in a yet 
unresolved way. Piaget’s theories provide a cogent overarching perspective on human 
cognitive development, coordinating broad theoretical ideas and diverse experimental 
results into a unified whole. Modern experimental work has shown Piaget’s ideas to be 
often  oversimplified  and  incorrect.  However,  what  has  replaced  the  Piagetan 
understanding  is  not  an  alternative  unified  and  coherent  theory,  but  a  variety  of 
microtheories addressing particular aspects of cognitive development. For this reason a 
number of contemporary theorists taking a computer science [1] or dynamical systems 
[2-4]  approach  to  developmental  psychology  have  chosen  to  adopt  the  Piagetan 
framework in spite of its demonstrated shortcomings, both because of its conceptual 
strengths and for lack of a coherent, more rigorously grounded alternative. 



Table 1

Stage Example

Infantile Object Permanence

Concrete Conservation of Number, Theory of Mind

Formal Systematic Experimentation

Reflexive Correction of Inference Bias

The  work  described  here  involves  the  construction  of  a  theory  of  cognitive 
development inspired conceptually by Piaget’s work, but specifically applicable to AI 
systems  that  rely  on  uncertain  logical  inference  as  a  primary  or  highly  significant 
component.  Piaget  describes  a  series  of  stages  of  cognitive  development,  each 
corresponding to a certain level of sophistication in terms of the types of reasoning a 
child can carry out. We describe a related series of stages, each corresponding not only 
to a level of sophistication in terms of demonstrated problem-solving ability, but also to 
a level of internal sophistication in terms of inference control mechanisms within AI 
software implementations. 

This  work  was inspired by  our  ongoing  research  involving the  Novamente  AI 
Engine  [5-7],  a  complex  integrative  software  system aimed  at  achieving  advanced 
Artificial General Intelligence (AGI) [8]. The Novamente system has been integrated 
with AGI-SIM, a 3D simulation world powered by the CrystalSpace game engine used 
in the Crystal Cassie embodiment of the SNePs AGI system [9]. Table 1 above shows 
each of our proposed developmental stages, with examples drawn from our ongoing 
research with the Novamente system.

1.Piaget’s Approach to Cognitive Development

Jean  Piaget,  in  his  classic  studies  of  human  developmental  psychology  [10-15], 
conceived of child development in four stages,  each roughly identified with an age 
group: infantile, preoperational, concrete operational, and formal.

--Infantile:  In  this  stage  a  mind  develops  basic  world-exploration  driven  by 
instinctive  actions.  Reward-driven  reinforcement  of  actions  learned  by  imitation, 
simple  associations  between words  and  objects,  actions  and  images,  and  the  basic 
notions of time, space, and causality are developed. The most simple, practical ideas 
and strategies for action are learned.

--Preoperational:  At this stage we see the formation of mental representations, 
mostly poorly organized and un-abstracted,  building mainly on intuitive rather than 
logical thinking. Word-object and image-object associations become systematic rather 
than  occasional.  Simple  syntax  is  mastered,  including  an understanding  of  subject-
argument  relationships.  One  of  the  crucial  learning  achievements  here  is  “object 
permanence”--infants learn that objects persist even when not observed. However, a 
number of cognitive failings persist with respect to reasoning about logical operations, 
and abstracting the effects of intuitive actions to an abstract theory of operations.



--Concrete: More abstract logical thought is applied to the physical world at this 
stage.  Among  the  feats  achieved  here  are:  reversibility--the  ability  to  undo  steps 
already  done;  conservation--understanding  that  properties  can  persist  in  spite  of 
appearances;

theory of mind--an understanding of the distinction between what I know and what 
others know (If I cover my eyes, can you still see me?). Complex concrete operations, 
such as putting items in height order,  are  easily achievable.  Classification becomes 
more sophisticated, yet the mind still cannot master purely logical operations based on 
abstract logical representations of the observational world.

--Formal:  Abstract  deductive  reasoning,  the  process  of  forming,  then  testing 
hypotheses,  and  systematically  reevaluating and  refining solutions,  develops at  this 
stage, as does the ability to reason about purely abstract concepts without reference to 
concrete  physical  objects.  This  is  adult  human-level  intelligence.  Note  that  the 
capability for formal operations is intrinsic in the PTL component of Novamente, but 
in-principle capability is not the same as pragmatic, grounded, controllable capability. 

Despite the influence and power of Piaget’s theory,  it  has received much valid 
criticism. Very early on, Vygotsky [16, 17] disagreed with Piaget’s explanation of his 
stages as inherent and developed by the child’s own activities, and Piaget’s prescription 
of good parenting as not interfering with a child’s unfettered exploration of the world. 
Much  of  the  analysis  of  Piaget’s  stages  as  being  asocially  grounded  start  with 
Vygotsky’s  assertion  that  children  function  in  a  world  surrounded  by  adults  who 
provide  a  cultural  context,  offering  ongoing  assistance,  critique,  and  ultimately 
validation of the child’s developmental activities. 

Vygotsky  also  was  an  early  critic  with  respect  to  the  idea  that  cognitive 
development is continuous, and continues beyond Piaget’s formal stage. Gagne [18] 
also believes in continuity, and that learning of prerequisite skills made the learning of 
subsequent  skills  easier  and  faster  without  regard  to  Piagetan  stage  formalisms. 
Subsequent  researchers  have  argued  that  Piaget  has  merely  constructed  ad  hoc 
descriptions  of  the  sequential  development  of  behaviour  [19-22].  We  agree  that 
learning  is  a  continuous  process,  and  our  notion  of  stages  is  more  statistically 
constructed than rigidly quantized.

Critique of Piaget’s notion of transitional “half stages” is also relevant to a more 
comprehensive hierarchical view of development. Some have proposed that Piaget’s 
half  stages  are  actually  stages  [23].  As  Commons  and Pekker  [22]  point  out:  “the 
definition of a stage that was being used by Piaget was based on analyzing behaviors 
and attempting to impose different structures on them. There is no underlying logical or 
mathematical  definition  to  help  in  this  process…”  Their  Hierarchical  Complexity 
development model uses task achievement rather than ad hoc stage definition as the 
basis  for  constructing  relationships  between  phases  of  developmental  ability--an 
approach which we find useful,  though our approach is  different  in that  we define 
stages in terms of specific underlying cognitive mechanisms. 

Another critique of Piaget is that one individual’s performance is often at different 
ability stages depending on the specific task (for example [24]). Piaget responded to 
early critiques along these lines by calling the phenomenon “horizontal décalage,” but 
neither he nor his successors [25,26] have modified his theory to explain (rather than 
merely describe) it.  Similarly to Thelen and Smith [2], we observe that the abilities 
encapsulated in the definition of a certain stage emerge gradually during the previous 
stage--so that the onset of a given stage represents the mastery of a cognitive skill that 
was previously present only in certain contexts.

Piaget also had difficulty accepting the idea of a preheuristic stage, early in the 
infantile  period,  in  which  simple  trial-and-error  learning  occurs  without  significant 



heuristic  guidance [27], a stage which we suspect  exists and allows formulation of 
heuristics by aggregation of learning from preheuristic pattern mining. Coupled with 
his  belief  that  a  mind’s  innate  abilities  at  birth  are  extremely  limited,  there  is  a 
troublingly unexplained transition from inability to ability in his model. 

Finally, another limiting aspect of Piaget’s model is that it did not recognize any 
stages  beyond  formal  operations,  and  included  no  provisions  for  exploring  this 
possibility. A number of researchers [25,28-31] have described one or more postformal 
stages.  Commons  and  colleagues  have  also  proposed  a  task-based  model  which 
provides  a  framework  for  explaining  stage  discrepancies  across  tasks  and  for 
generating  new  stages  based  on  classification  of  observed  logical  behaviors.  [32] 
promotes a statistical conception of stage, which provides a good bridge between task-
based and stage-based models of development, as statistical modeling allows for stages 
to be roughly defined and analyzed based on collections of task behaviors.

[29] postulates the existence of a postformal stage by observing elevated levels of  
abstraction which, they argue, are not manifested in formal thought. [33] observes a 
postformal stage when subjects become capable of analyzing and coordinating complex 
logical systems with each other, creating metatheoretical supersystems. In our model, 
with the reflexive stage of development, we expand this definition of metasystemic 
thinking  to  include  the  ability  to  consciously  refine  one’s  own  mental  states  and 
formalisms of thinking. Such self-reflexive refinement is necessary for learning which 
would allow a mind to analytically devise entirely new structures and methodologies 
for both formal and postformal thinking. 

2.The Uncertain Inference Paradigm 

Piaget’s developmental stages are very general, referring to overall types of learning, 
not specific mechanisms or methods. This focus was natural since the context of his 
work was human developmental psychology, and neuroscience has not yet progressed 
to the point of understanding the neural mechanisms underlying any sort of inference. 
But if one is studying developmental psychology in an AI context where one knows 
something about the internal mechanisms of the AI system under consideration, then 
one can work with a more specific model of learning. Our focus here is on AI systems 
whose operations contain uncertain inference as a central component, both directly and 
used  as  a  model  for  a  theory  which  we  hope  to  eventually  test  against  natural 
intelligence as well.

An uncertain inference system, as we consider it here, consists of four components, 
which work together in a feedback-control loop (Fig. 1):

• a content representation scheme
• an uncertainty representation scheme
• a set of inference rules
•  a set of inference control schemata



Figure 1. A Simplified Look at Feedback-Control in Uncertain Inference

Examples  of  content  representation schemes are predicate logic and term logic 
[34]. Examples of uncertainty representation schemes are fuzzy logic [35], imprecise 
probability  theory  [36,37],  Dempster-Shafer  theory  [37,38],  Bayesian  probability 
theory [39], NARS [40], and the Probabilistic Logic Networks (PLN) representation 
used in Novamente [41].

Many, but not all, approaches to uncertain inference involve only a limited, weak 
set  of  inference  rules  (e.g.  not  dealing  with complex  quantified expressions).  Both 
NARS and PLN contain uncertain inference rules that apply to logical constructs of 
arbitrary complexity. Only a system capable of dealing with arbitrary complexity will 
have any potential of leading to real intelligence.

The subtlest part of uncertain inference is inference control: the choice of which 
inferences to do, in what order. Inference control is the primary area in which human 
inference  currently  exceeds  automated  inference.  Humans  are  not  very  efficient  or 
accurate at carrying out inference rules, with or without uncertainty, but we are very 
good at determining which inferences to do and in what order, in any given context. 
The lack of effective, context-sensitive inference control heuristics is why the general 
ability of  current  automated theorem provers is  considerably weaker than that  of  a 
mediocre university mathematics major [42].



3.Novamente and Probabilistic Logic Networks

Novamente’s  knowledge  representation  consists  of  weighted  labeled,  generalized 
hypergraphs. Patterns embodying knowledge emerge from applying various learning 
and reasoning algorithms to these hypergraphs.

A  hypergraph  is  an  abstract  mathematical  structure,  which  consists  of  objects 
called  Vertices  and  objects  called  Edges,  which  connect  the  Vertices  [43].  In 
Novamente  we have  adopted  the  terminology of  using  Node/Vertex to  refer  to  the 
elements of the hypergraph that are concretely implemented in a Novamente system’s 
memory, and  Link/Edge to refer to elements of hypergraphs that are used to model 
Novamente systems and represent patterns that emerge in the concretely implemented 
hypergraph.  We  use  the  term  Atom to  refer  to  Nodes  and  Links  inclusively.  A 
hypergraph differs from a graph in that  it  allows Edges to  connect  more than two 
Vertices. Novamente hypergraphs extend ordinary hypergraphs to contain additional 
features,  such  as  Edges  that  point  to  Edges  instead  of  Vertices,  and  Vertices  that 
represent complete sub-hypergraphs. 

A  “weighted,  labeled  hypergraph”  is  a  hypergraph  whose  Atoms  all  have 
associated annotations  called  labels,  and one  or  more numbers  that  are generically 
called weights. The label associated with an Atom might be interpreted as telling you 
what type of entity it is (a metalogical knowledge annotation). An example of a weight 
attached to an Atom is a number representing a probability, or a number representing 
how important the Atom is to the system.

In  the  framework  introduced  in  the  previous  section,  Novamente’s  content 
representation  is  a  “labeled  generalized  hypergraph  with  weights  representing  the 
attention paid to hypergraph components via learning and reasoning algorithms” and 
the  uncertainty  representation  consists  of  some  additional  weights  attached  to  the 
Nodes  and  Links  of  the  hypergraph,  representing  probability  values  and  related 
quantities such as “weight of evidence.”

Novamente’s knowledge representation includes various types of Nodes, including 
ConceptNodes  and  SchemaNodes.  SchemaNodes  embody  cognitive,  perceptual  or 
motoric  procedures,  and  are  represented  as  mathematical  objects  using  arithmetic, 
logical and combinatory operators to combine elementary data types and Novamente 
Nodes  and  Links.  It  also  includes  a  number  of  other  node  types  including 
PredicateNodes (SchemaNodes that produce truth values as their outputs) and Nodes 
representing  particular  kinds  of  concrete  information,  such  as  NumberNodes, 
WordNodes, PolygonNodes, etc. An extensive list is given in [6].

Novamente also contains a variety of Link types, including some that represent 
logical relationships, such as ExtentionalInheritanceLink (ExtInhLink: an edge which 
indicates  that  the  source  Atom  is  a  special  case  of  the  target), 
ExtensionalSimilarityLink (ExtSimLink: which indicates that one Atom is similar to 
another),  and  ExecutionLink  (a  ternary  edge,  which  joins  {S,B,C}  when  S  is  a 
SchemaNode and the result from applying S to B is C). Thus, a Novamente knowledge 
network is a hypergraph whose Nodes represent ideas or procedures, and whose Links 
represent  relationships  of  specialization,  similarity  or  transformation  among  ideas 
and/or procedures.

ExtInh and ExtSim Links come with probabilistic weights indicating the extent of 
the relationship they denote (e.g. the ExtSimLink joining the “cat” ConceptNode to the 
“dog” ConceptNode gets a higher probability weight than the one joining the “cat” 
ConceptNode to the “washing machine” ConceptNode). The mathematics of

transformations  involving  these  probabilistic  weights  becomes  quite  involved--



particularly when one introduces SchemaNodes corresponding to abstract mathematical 
operations.  SchemaNodes  enable  Novamente  hypergraphs  to  have  the  complete 
mathematical power of standard logical formalisms like predicate calculus, but with the 
added advantage of a natural representation of uncertainty in terms of probabilities, as 
well  as  a  neurostructurally  motivated  model  of  complex  knowledge  as  dynamical 
networks.

Novamente  contains  a  probabilistic  reasoning engine called Probabilistic  Logic 
Networks (PLN) which exists specifically to carry out reasoning on these relationships, 
and  will  be  described  in  a  forthcoming  publication  [8].  The  mathematics  of  PLN 
contains  many  subtleties,  and  there  are  relations  to  prior  approaches  to  uncertain 
inference including NARS [40] and Walley’s theory of interval probabilities [44]. The 
current  implementation of  PLN within the Novamente software has been tested on 
various examples of mathematical and commonsense inference.

A simple example of a PLN uncertain inference rule is the probabilistic deduction 
rule, which takes the form

A  B

B  C
|-

A  C

(where e.g. AB is a shorthand for the ExtInhLink from A to B), whose uncertain 
truth value formula has as one component the formula

sAC = sAB sBC  + (1-sAB) ( sC-- sB sBC ) / (1- sB )

(where e.g.  sAC and sB refer  to the probability values attached to AC and B 
respectively).  PLN attaches to each node and link a  “weight of  evidence” value in 
addition to a probability, but the deduction formula for weight of evidence is more 
complex and will not be given here.

Inference control in Novamente takes several forms:
1. Standard forward-chaining and backward-chaining inference heuristics (see 

e.g. [45])
2.  A  reinforcement  learning  mechanism  that  allows  inference  rules  to  be 

chosen based on experience. Probabilities are tabulated regarding which inference 
rules have been useful in the past in which contexts, and these are subsequently 
used to bias the choices of inference rules during forward or backward chaining 
inference

3. Application of PLN inference to the probabilities used in the reinforcement 
learning mechanism--enables generalization, abstraction and analogy to be used in 
guessing which inference rules are most useful in a given context
These  different  approaches  to  inference  control  enable  increasingly  complex 

inferences,  and involve increasing amounts of processor-time utilization and overall 
cognitive  complexity.  They  may  also  be  interpreted  as  corresponding  to  loosely 
Piagetan stages of cognitive development.



Figure 2. The Stages of the Goertzel-Bugaj Theory

4.Defining Developmental Stages in Terms of Inference Control 

Inspired by Piaget’s general ideas, later critiques, and the structure of inference control 
in Novamente, we have created a novel theory of cognitive developmental stages (Fig. 
2), defined in terms of the control of uncertain inference trajectories. 

Each stage in our theory is defined in terms of both testable cognitive capabilities, 
similar  to  Piaget  and other  researchers  in  the  field,  but  also  in  terms  of  inference 
control  structures  which  we  feel  serve  as  both  a  reasonable  model  for  natural 
intelligence and also are suitable for application within an AI system.

Inference control structures are mechanisms by which the process of learning itself 
is performed. Ability to learn is dictated by the capabilities of the inference control 
system,  and  these  capabilities  are  refined  through  iterative  experience  and 
observational  feedback  just  as  they  use  experience  and  observation  to  refine 
capabilities in other cognitive tasks.

By  defining  these  stages  in  terms  of  inference  control,  we  have  an  structural 
argument  to  make  about  the  topological  shape  and  complexity  of  the  underlying 
cognitive network in addition to the traditional capability-based arguments about what 
defines an intelligent entity as being in a particular stage (for a particular task and its 
associated cognitive pathways). This is applicable both to building AI systems and in 
providing structural hypotheses about natural intelligence which can be tested as high-
resolution, continuous-time neural imaging technologies mature and allow us to do so.

So, while our stages draw upon Piaget and other research, it is a focus on tying 
underlying learning procedure as structure with capability that is one of the differences 
in our theory. The stages are defined as follows.



Figure 3. The Infantile Stage

--Infantile: Able to recognize patterns in and conduct inferences about the world, 
but  only  using  simplistic  hard-wired  (not  experientially  learned)  inference  control 
schema, along with pre-heuristic pattern mining of experiential data.

In  the  infantile  stage  an  entity  is  able  to  recognize  patterns  in  and  conduct 
inferences  about  its  sensory  surround  context  (i.e.,  it's  “world”),  but  only  using 
simplistic,  hard-wired  (not  experientially  learned)  inference  control  schemata. 
Preheuristic pattern-mining of experiential data is performed in order to build future 
heuristics about analysis of and interaction with the world. 

Infantile stage tasks include:
• Exploratory  behavior  in  which  useful  and  useless  /  dangerous  behavior  is 

differentiated by both trial and error observation, and by parental guidance.
• Development of “habits” -- i.e. Repeating tasks which were successful once to 

determine if they always / usually are so.
• Simple goal-oriented behavior such as “find out what cat hair tastes like” in 

which one must plan and take several sequentially dependent steps in order to 
achieve the goal.

Inference control is very simple during the infantile stage (Fig. 3) as it is the stage 
during which both the most basic knowledge of the world is acquired, and the most 
basic of cognition and inference control structures are developed as the building block 
upon which will be built the next stages of both knowledge and inference control.

Another  example  of  a  cognitive  task  at  the  borderline  between  infantile  and 
concrete  cognition  is  learning  object  permanence,  a  problem  discussed  in  a 
Novamente/AGI-SIM context in [46]. Another example is the learning of word-object 
associations: e.g. learning that when the word “ball” is uttered in various contexts (“Get 
me the ball,” “That’s a nice ball,” etc.) it generally refers to a certain type of object. 



The key point  regarding these  “infantile”  inference  problems,  from the  Novamente 
perspective, is that assuming one provides the inference system with an appropriate set 
of  perceptual  and motor  ConceptNodes  and  SchemaNodes,  the  chains  of  inference 
involved are short.  They involve about a dozen inferences,  and this means that the 
search tree of possible PLN inference rules walked by the PLN backward-chainer is 
relatively  shallow.  Sophisticated  inference  control  is  not  required:  standard  AI 
heuristics are sufficient.

In  short,  textbook  narrow-AI  reasoning  methods,  utilized  with  appropriate 
uncertainty-savvy truth value formulas and coupled with appropriate representations of 
perceptual and motor inputs and outputs, correspond roughly to Piaget’s infantile stage 
of cognition. The simplistic approach of these narrow-AI methods may be viewed as a 
method of creating building blocks for subsequent, more sophisticated heuristics.

In our  theory Piaget’s  preoperational  phase appears  as transitional  between the 
infantile  and  concrete  operational  phases.  We  suspect  this  approach  to  cognitive 
modeling may have general  value beyond Novamente,  but  we will  address a  more 
generalized  developmental  theory  in  future  writings.  We  have  designed  specific 
Novamente / AGI-SIM learning tasks based on all the key Piagetan themes. Currently 
our concrete work is near the beginning of this list, at Piaget’s infantile stage. 

--Concrete: Able to carry out  more complex chains of  reasoning regarding the 
world, via using inference control schemata that adapt behavior based on experience 
(reasoning about a given case in a manner similar to prior cases).

In the concrete operational stage an entity is able to carry out more complex chains 
of reasoning about the world. Inference control schemata which adapt behavior based 

Figure 4. The Concrete Operational Stage

on experience, using experientially learned heuristics (including those learned in 
the  prior  stage),  are  applied  to  both  analysis  of  and  interaction  with  the  sensory 
surround / world. 



At this  stage  a  special  cognitive  task  capability  is  gained.  It  is  referred  to  as 
“Theory  of  Mind.”  In  cognitive  science  “Theory  of  Mind”  means  the  ability  to 
understand the fact  that  not  only oneself,  but other sentient  beings have memories, 
perceptions,  and  experiences.  This  is  the  ability  to  conceptually  “put  oneself  in 
another's shoes” (even if you happen to assume incorrectly about them by doing so).

Concrete Operational stage tasks include:
• Conservation tasks, such as conservation of number,
• Decomposition of complex tasks into easier subtasks, allowing increasingly 

complex tasks to be approached by association with more easily understood 
(and previously experienced) smaller tasks,

• Classification  and  Serialization  tasks,  in  which  the  mind  can  cognitively 
distinguish  various  disambiguation  criteria  and  group  or  order  objects 
accordingly.

.In terms of inference control this is the stage in which actual knowledge about 
how to  control  inference  itself  is  first  explored  (Fig.  4).  This  means  an  emerging 
understanding of inference itself as a cognitive task and methods for learning, which 
will be further developed in the following stages.

--Formal:  Able to carry out arbitrarily complex inferences (constrained only by 
computational  resources)  via  including  inference  control  as  an  explicit  subject  of 
abstract learning.

In the formal stage, an entity is able to carry out arbitrarily complex inferences 
(constrained only by computational resources). Abstraction and inference about both 

Figure 5. The Formal Stage

the sensorimotor surround (world) and about abstract ideals themselves (including the 
final stages of indirect learning about inference itself) are fully developed.



Formal  stage  tasks  are  centered  entirely  around  abstraction  and  higher-order 
inference tasks such as:

• Mathematics and other formalizations.
• Scientific experimentation and other rigorous observational testing of abstract 

formalizations.
• Social  and  philosophical  modeling,  and  other  advanced  applications  of 

empathy and the Theory of Mind.
In terms of inference control this stage sees not just perception of new knowledge 

about inference control itself, but inference controlled reasoning about that knowledge 
and the creation of abstract formalizations about inference control which are reasoned-
upon, tested, and verified or debunked (Fig.5).  

Existing natural intelligence systems (i.e., humans) are fully capable of performing 
up to the Formal stage.

It  is  more  controversial  whether  or  not  any  humans  have  truly  mastered  the 
following stage, the reflexive stage. Followers of various meditative and pedagogical 
practices  claim Reflexive  stage abilities,  but  such claims are  not  as  yet  considered 
verified.

--Reflexive: Capable of self-modification of internal structures.  (In the case of a 
Novamente, this process is very direct and thorough.)

In the reflexive stage an entity is  able to include inference  control  itself as an 
explicit subject of abstract learning (i.e. the ability to reason about one's own tactical 

Figure 6. The Reflexive (Post-formal) Stage

and strategic approach to modifying one’s own learning and thinking, and modify the 
these  inference  control  strategies  based  on  analysis  of  experience  with  various 
cognitive approaches. 



Ultimately,  the  entity  can self-modify  its  internal  cognitive  structures.  Any 
knowledge or heuristics can be revised, including  metatheoretical  and metasystemic 
thought itself. Initially this is done indirectly, but at least in the case of AI systems it is 
theoretically possible to also do so directly. This is referred to as a separate stage of 
Full Self Modification in (Fig. 2) but it is really the end phase of the reflexive stage. 
Self modification of inference control itself is the primary task in this stage. In terms of 
inference  control  this  stage  adds  an  entire  new feedback  loop  for  reasoning  about 
inference control itself (Fig. 6).

The semantics of our stages is similar but not identical to Piaget’s. Our stages are 
defined via internal cognitive mechanisms, and we then posit that these mechanisms 
correspond to the general ability to solve certain classes of problems in a generalizable 
way. For instance, we suggest that it is only through inference control schemata which 
adapt  based  on  experience  that  uncertain  inference-based  AI  systems  can  learn  to 
consistently  solve  Piagetan  concrete-operational  tasks  in  a  way  that  provides 
knowledge suitable for further generalization. However, it  may be that minds using 
hard-wired inference control schemata (typical  of the infantile stage) can still  solve 
some Piagetan concrete-operational tasks, though most solutions to such tasks obtained 
in this way will be “brittle” and not easily generalizable to other tasks using infantile 
cognition.

5. Conservation of Number Detailed 

Above, we mentioned the idea of conservation of number. This is an example of a 
learning problem classically categorized within Piaget’s concrete-operational phase, a 
“conservation laws” problem, discussed in [1] in the context of software that solves the 
problem using (logic-based and neural net) narrow-AI techniques. Conservation laws 
are very important to cognitive development.

Conservation  is  the  idea  that  a  quantity  remains  the  same  despite  changes  in 
appearance. If you show a child some objects (Fig. 1) and then spread them out, an 
infantile mind will focus on the spread, and believe that there are now more objects 
than before, whereas a concrete-operational mind will understand that the quantity of 
objects has not changed.

Conservation of number seems very simple, but from a developmental perspective 
it is actually rather difficult. “Solutions” like those given in [1] that use neural networks 
or  customized  logical  rule-bases  to  find  specialized  solutions  that  solve  only  this 
problem fail to fully address the issue, because these solutions don’t create knowledge 
adequate to aid with the solution of related sorts of problems.

We hypothesize that this problem is hard enough that for an inference-based AI 
system to solve it in a developmentally useful way, its inferences must be guided by 
meta-inferential  lessons  learned  from prior  similar  problems.  When  approaching  a 
number conservation problem, for example, a reasoning system might draw upon past 
experience with set-size problems (which may be trial-and-error experience). This is 
not  a  simple “machine  learning” approach whose  scope  is  restricted to  the current 
problem, but rather a heuristically guided approach which (a) aggregates information 
from prior experience to guide solution formulation for the problem at hand, and (b) 
adds  the  present  experience  to  the  set  of  relevant  information  about  quantification 
problems for future refinement of thinking.



Figure 7. Conservation of Number

For instance, a very simple context-specific heuristic that a system might learn 
would be: “When evaluating the truth value of a statement related to the number of 
objects in a set, it is generally not that useful to explore branches of the backwards-
chaining search tree that  contain relationships  regarding the sizes,  masses,  or  other 
physical properties of the objects in the set.” This heuristic itself may go a long way 
toward guiding an inference process toward a correct solution to the problem--but it is 
not something that a mind needs to know “a priori.” A concrete-operational stage mind 
may learn this by data-mining prior instances of inferences involving sizes of sets. 
Without such experience-based heuristics, the search tree for such a problem will likely 
be unacceptably large. Even if it is “solvable” without such heuristics, the solutions 
found may be overly fit to the particular problem and not usefully generalizable.

6. Theory of Mind Detailed

Another, absolutely crucial, learning problem mentioned above that is typically classed 
in the Piagetan concrete-operational stage is ”theory of mind” – which means, in this 
context,  fully  understanding  the  fact  that  others  have  memories,  perceptions  and 
experiences.

Consider this experiment: a preoperational child is shown her favorite “Dora the 
Explorer”  DVD box.  Asked  what  show  she’s  about  to  see,  she’ll  answer  “Dora.” 
However, when her parent plays the disc, it’s “Spongebob Squarepants.” If you then 
ask her what show her friend will expect when given the “Dora” DVD box, she will 
respond “Spongebob” although she just answered “Dora” for herself. A child lacking a 
theory  of  mind  can  not  reason  through  what  someone  else  would  think  given 
knowledge other than her own current knowledge. Knowledge of self is intrinsically 
related to the ability to differentiate oneself from others, and this ability may not be 
fully developed at birth.

Several  theorists  [47,48],  based  in  part  on  experimental  work  with  autistic 
children,  perceive  theory  of  mind  as  embodied  in  an  innate  module  of  the  mind 
activated at a certain developmental stage (or not, if damaged). While we consider this 
possible, we caution against adopting a simplistic view of the “innate vs. acquired” 
dichotomy: if there is innateness it may take the form of an innate predisposition to 
certain sorts of learning [49].

Davidson [50], Dennett [51] and others support the common belief that theory of 
mind  is  dependent  upon  linguistic  ability.  A  major  challenge  to  this  prevailing 
philosophical  stance  came  from  Premack  and  Woodruff  [49]  who  postulated  that 
prelinguistic primates do indeed exhibit “theory of mind” behavior. While Premack and 
Woodruff’s experiment itself has been challenged [52], their general result has been 
bolstered by follow-up work showing similar results such as [53]. It seems to us that 
while theory of mind depends on many of the same inferential capabilities as language 
learning, it is not intrinsically dependent on the latter.

There is a school of thought often called the Theory Theory [54]-[55]-[56] holding 
that  a  child’s  understanding of  mind is  best  understood in  terms of  the  process  of 



iteratively formulating and refuting a series of naïve theories about others. Alternately, 
Gordon [57] postulates that theory of mind is related to the ability to run cognitive 
simulations of others’ minds using one’s own mind as a model. We suggest that these 
two approaches are actually quite harmonious with one another. In an uncertain AI 
context,  both  theories  and  simulations  are  grounded  in  collections  of  uncertain 
implications, which may be assembled in context-appropriate ways to form theoretical 
conclusions  or  to  drive  simulations.  Even  if  there  is  a  special  “mind-simulator” 
dynamic in the human brain that carries out simulations of other minds in a manner 
fundamentally  different  from  explicit  inferential  theorizing,  the  inputs  to  and  the 
behavior of this simulator may take inferential form, so that the simulator is in essence 
a way of efficiently and implicitly producing uncertain inferential conclusions from 
uncertain premises.

The details via which a Novamente system should be able to develop theory of 
mind in the AGI-SIM world have been articulated in detail, though practical learning 
experiments in this direction have not yet been done. We have not yet explored the 
possibility of giving Novamente a special “mind-simulator” component, though this 
would be possible; instead we have initially been pursuing a more purely inferential 
approach.

First,  it  is  very simple for a  Novamente system to learn patterns such as “If I 
rotated by pi radians, I would see the yellow block.” And it’s not a big leap for PLN to 
go from this to the recognition that “You look like me, and you’re rotated by pi radians 
relative to  my orientation,  therefore you probably see the yellow block.” The only 
nontrivial aspect here is the “you look like me” premise.

Recognizing “embodied agent” as a category, however, is a problem fairly similar 
to recognizing “block” or “insect” or “daisy” as a category. Since the Novamente agent 
can perceive most parts of its own “robot” body--its arms, its legs, etc.--it should be 
easy for the agent to figure out that physical objects like these look different depending 
upon its distance from them and its angle of observation. From this it should not be that 
difficult for the agent to understand that it  is naturally grouped together with other 
embodied agents (like its teacher), not with blocks or bugs.

The only other major ingredient needed to enable theory of mind is “reflection”-- 
the ability of the system to explicitly recognize the existence of knowledge in its own 
mind (note that this term “reflection” is not the same as our proposed “reflexive” stage 
of  cognitive development).  This exists automatically in Novamente,  via the built-in 
vocabulary  of  elementary  procedures  supplied  for  use  within  SchemaNodes 
(specifically,  the atTime and TruthValue operators).  Observing that  “at  time T, the 
weight  of  evidence  of  the  link  L  increased  from  zero”  is  basically  equivalent  to 
observing that the link L was created at time T.  

Then, the system may reason, for example,  as follows (using a combination of 
several PLN rules including the above-given deduction rule):

Implication
My eye is facing a block and it is not dark
A relationship is created describing the block’s color 

Similarity
My body
My teacher’s body

|-
Implication

My teacher’s eye is facing a block and it is not dark
A relationship is created describing the block’s color 



This sort of inference is the essence of Piagetan “theory of mind.” Note that in 
both of these implications the created relationship is represented as a variable rather 
than a specific relationship. The cognitive leap is that in the latter case the relationship 
actually  exists  in  the  teacher’s  implicitly  hypothesized  mind,  rather  than  in 
Novamente’s mind. No explicit hypothesis or model of the teacher’s mind need be 
created  in  order  to  form  this  implication--the  hypothesis  is  created  implicitly  via 
inferential abstraction. Yet, a collection of implications of this nature may be used via 
an uncertain reasoning system like PLN to create theories and simulations suitable to 
guide complex inferences about other minds.

From the  perspective  of  developmental  stages,  the  key  point  here  is  that  in  a 
Novamente context this sort of inference is too complex to be viably carried out via 
simple inference heuristics. This particular example must be done via forward chaining, 
since  the  big  leap  is  to  actually  think  of  forming  the  implication  that  concludes 
inference.  But  there  are  simply  too  many  combinations  of  relationships  involving 
Novamente’s eye, body, and so forth for the PLN component to viably explore all of 
them  via  standard  forward-chaining  heuristics.  Experience-guided  heuristics  are 
needed, such as the heuristic that if physical objects A and B are generally physically 
and functionally similar, and there is a relationship involving some part of A and some 
physical  object  R,  it  may  be  useful  to  look  for  similar  relationships  involving  an 
analogous part of B and objects similar to R.  This kind of heuristic may be learned by 
experience--and the masterful deployment of such heuristics to guide inference is what 
we hypothesize to characterize the concrete stage of development. The “concreteness” 
comes  from the  fact  that  inference  control  is  guided  by  analogies  to  prior  similar 
situations.

7. Systematic Experimentation

The Piagetan formal phase is a particularly subtle one from the perspective of uncertain 
inference. In a sense, AI inference engines already have strong capability for formal 
reasoning  built  in.  Ironically,  however,  no  existing  inference  engine  is  capable  of 
deploying its reasoning rules in a powerfully effective way, and this is because of the 
lack of inference control heuristics adequate for controlling abstract formal reasoning. 
These heuristics are what arise during Piaget’s formal stage, and we propose that in the 
content of uncertain inference systems, they involve the application of inference itself 
to the problem of refining inference control. 

A  problem  commonly  used  to  illustrate  the  difference  between  the  Piagetan 
concrete  operational  and formal  stages  is  that  of  figuring out  the rules  for  making 
pendulums swing quickly versus slowly [10]. If you ask a child in the formal stage to 
solve this problem, she may proceed to do a number of experiments, e.g. build a long 
string with a light weight, a long string with a heavy weight, a short string with a light 
weight and a short string with a heavy weight. Through these experiments she may 
determine that a short string leads to a fast swing, a long string leads to a slow swing, 
and the weight doesn’t matter at all.

The role of experiments like this, which test “extreme cases,” is to make cognition 
easier.  The  formal-stage  mind  tries  to  map  a  concrete  situation  onto  a  maximally 
simple and manipulable set of abstract propositions, and then reason based on these. 
Doing  this,  however,  requires  an  automated  and  instinctive  understanding  of  the 
reasoning process itself. The above-described experiments are good ones for solving 



the pendulum problem because they provide data that is very easy to reason about. 
From the perspective of uncertain inference systems, this is the key characteristic of the 
formal stage: formal cognition approaches problems in a way explicitly calculated to 
yield tractable inferences.

Note  that  this  is  quite  different  from  saying  that  formal  cognition  involves 
abstractions and advanced logic. In an uncertain logic-based AI system, even infantile 
cognition may involve these--the difference lies in the level of inference control, which 
in the infantile stage is simplistic and hard-wired, but in the formal stage is based on an 
understanding of what sorts of inputs lead to tractable inference in a given context.

8. Correction of Inference Biases

Finally, we will briefly allude to an example of what we’ve called the “reflexive” stage 
in inference. Recall that this is  a stage beyond Piaget’s formal stage, reflecting the 
concerns of [25,28-31] that the Piagetan hierarchy ignores the ongoing development of 
cognition into adulthood.

Highly  intelligent  and  self-aware  adults  may  carry  out  reflexive  cognition  by 
explicitly reflecting upon their own inference processes and trying to improve them. An 
example is the intelligent improvement of uncertain-truth-value-manipulation formulas. 
It is well demonstrated that even educated humans typically make numerous errors in 
probabilistic  reasoning  [57,58].  Most  people  don’t  realize  it  and  continue  to 
systematically make these errors throughout their lives. However, a small percentage of 
individuals make an explicit effort to increase their accuracy in making probabilistic 
judgments by consciously endeavoring to internalize the rules of probabilistic inference 
into their automated cognition processes.

The same sort of issue exists even in an AI system such as Novamente which is 
explicitly based on probabilistic reasoning.  PLN is founded on probability theory, but 
also  contains  a  variety  of  heuristic  assumptions  that  inevitably  introduce  a  certain 
amount of error into its inferences. For example, the probabilistic deduction formula 
mentioned above embodies a heuristic independence assumption. Thus PLN contains 
an  alternate  deduction  formula  called  the  “concept  geometry  formula”  [41]  that  is 
better in some contexts, based on the assumption that ConceptNodes embody concepts 
that are roughly spherically-shaped in attribute space. A highly advanced Novamente 
system could potentially augment the independence-based and concept-geometry-based 
deduction  formulas  with  additional  formulas  of  its  own  derivation,  optimized  to 
minimize error in various contexts. This is a simple and straightforward example of 
reflexive cognition--it illustrates the power accessible to a cognitive system that has 
formalized and reflected upon its own inference processes, and that possesses at least 
some capability to modify these.

9. Keeping Continuity in Mind

Continuity of mental stages, and the fact that a mind may appear to be in multiple 
stages  of  development  simultaneously  (depending upon the tasks  being tested),  are 
crucial to our theoretical formulations and we will touch upon them again here. Piaget 
attempted  to  address  continuity  with  the  creation  of  transitional  “half  stages”.  We 
prefer to observe that each stage feeds into the other and the end of one stage and the 
beginning of the next blend together.



The distinction between formal and post-formal, for  example, seems to “merely” 
be  the  application  of  formal  thought  to  oneself.  However,  the  distinction  between 
concrete  and  formal  is  “merely”  the  buildup  to  higher  levels  of  complexity  of  the 
classification, task decomposition, and abstraction capabilities of the concrete stage. 
The stages represent general trends in ability on a continuous curve of development, 
not  discrete  states  of  mind  which  are  jumped-into  quantum  style  after  enough 
“knowledge energy” builds-up to cause the transition.

Observationally,  this  appears  to  be  the  case  in  humans.  People  learn  things 
gradually,  and  show  a  continuous  development  in  ability,  not  a  quick  jump  from 
ignorance  to  mastery.  We  believe  that  this  gradual  development  of  ability  is  the 
signature of genuine learning, and that prescriptively an AI system must be designed in 
order to have continuous and asymmetrical development across a variety of tasks in 
order to be considered a genuine learning system. While quantum leaps in ability may 
be possible in an AI system which can just “graft” new parts of brain onto itself (or an 
augmented human which may someday be able to do the same using implants), such 
acquisition of knowledge is not really learning. Grafting on knowledge does not build 
the cognitive pathways needed in order to actually learn. If this is the only mechanism 
available to an AI system to acquire new knowledge, then it is not really a learning 
system.

10. Our Theory: Applicability and Issues

Our  theory  is  applicable  to  both  humans,  and  AI  Systems  built  upon  uncertain 
inference systems which allow arbitrary complexity can both be described using our 
theory. Both humans and properly designed AI systems have all the characteristics of 
an uncertain inference system, and should exhibit all  four stages of task capability. 
Humans have the first three already mastered, and may need AI systems to achieve the 
fourth. AI systems can more easily achieve the fourth once the first three are achieved, 
but need a lot of human help to get through the first three.

Though our theory is currently being further developed, and is not yet rigorously 
tested, we already have observed two issues with it which we will attempt to redress 
through our further theoretical  and practical work.

So far,  no AI system has made it  to  even the Concrete  stage of  development. 
However, our model gives guidelines for how to approach and chart this development. 
By defining the stages in ways which are equally applicable to AI systems and humans 
we hope to be able to give a framework for guiding the cognitive development of an AI 
as well as to help better describe human cognition for further analysis.

Also, humans may never proceed as far long into the reflexive postformal stage as 
AI systems. If we do, it may require the assistance of AI systems to help us understand 
and  augment  our  biological  hardware  in  ways  we  currently  do  not  understand. 
However, practices such as rational metasystemic thinking and irrational  meditative 
practices  may allow us  to  perform some amount  of  self-modification even without 
being able to directly alter our neural representations at a truly metasystemic level.

11. Conclusion

AI systems must learn, but they must also develop: and development in this sense takes 
place over a longer time scale than learning, and involves more fundamental changes in 



cognitive  operation.  Understanding  the  development  of  cognition  is  equally  as 
important to AI as understanding the nature of cognition at any particular stage.

We have proposed a novel approach to defining developmental stages, in which 
internal properties of inference control systems are correlated with external learning 
capabilities, and have fleshed out the approach via giving a series of specific examples 
related to the Novamente AI Engine and the AGI-SIM world. Our future work with 
Novamente  will  involve  teaching  it  to  perform  behaviors  in  the  AGI-SIM  world, 
progressing gradually through the developmental stages described here, using examples 
such  as  those  given.  Finally,  we  suspect  that  this  approach  to  developmental 
psychology also has  relevance beyond Novamente--most  directly  to  other  uncertain 
inference-based AI systems, and perhaps to developmental psychology in general.
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